Errata in "Statistical Mechanics in a Nutshell" Second edition

L. Peliti

March 7, 2025

Thanks to D. Dardani.

Chapter 5. Phase Transitions

5.2 van der Waals equation

Page 161, line 21, exercise 5.2. Read: of the derivatives ∂p_{liq} = ∂v_{liq})_T and ∂p_{vap} = ∂v_{vap})_T of the equation of state at coexistence, correct to: of the derivatives ∂p_{liq}/∂v_{liq})_T and ∂p_{vap}/∂v_{vap})_T of the equation of state at coexistence,

Chapter 6. Renormalization Group

6.6 Renormalization in Fourier Space

6.6.3 Critical Exponents at First Order in ϵ

• Page 243, line 6 from bottom. Read: When the lengths are rescaled by a factor 1/b at the fixed point... that defines the exponent η .

correct to:

When the lengths are rescaled by a factor 1/b at the fixed point, the correlation function in real space is rescaled by a factor $b^{2d}\zeta^{-2}$, where the factors ζ come from the rescaling of the field ϕ and the factors b^d come from the fact that one spin in the rescaled model corresponds to b^d ones in the original one. Therefore

$$G(\mathbf{r}/b) = b^{2d} \zeta^{-2} G(\mathbf{r}) = b^{d-2} G(\mathbf{r}).$$
(6.128)

This implies $G(\mathbf{r}) \sim |\mathbf{r}|^{-(d-2)}$, which should be compared with the relation $G(\mathbf{r}) \sim |\mathbf{r}|^{-(d-2+\eta)}$, that defines the exponent η .

Chapter 10. Stochastic Thermodynamics

10.7 Fluctuation Relations

• Page 400, line 12 from bottom. Read: $\Delta S^{\rm tot}$ has a distribution

correct to: ΔS^{tot} has a Gaussian distribution

Appendix B. Convex Functions and the Legendre Transformation

B.1 Convex functions

• Page 478, line 4 from bottom. Read: expansion and by the weighted mean-value theorem correct to: expansion with the remainder in the Lagrange form